ALD Aerogel Paper published in Chemistry of Materials

Our new paper “Tunable Atomic Layer Deposition into Ultra-High-Aspect-Ratio (>60000:1) Aerogel Monoliths Enabled by Transport Modeling” is published in Chem. Mater. We demonstrate tunable control of the ALD infiltration depth into an aerogel monolith and develop a reaction-diffusion model to accurately describe the coating process. The model allows for co-optimization of the total deposition time Continue Reading »

Solid-state battery perspective published in Joule

Our joint Perspective article with the Sakamoto group at UM was recently published in Joule, entitled “Transitioning solid-state batteries from lab to market: Linking electro-chemo-mechanics with practical considerations”.  In this perspective, we consulted with three major automotive manufacturers to identify key challenges in commercialization of solid-state batteries for electric vehicles, including manufacturing, cell design, Continue Reading »

New paper published in Matter

Our paper “Operando Analysis of the Molten Li|LLZO Interface: Understanding How the Physical Properties of Li Affect the Critical Current Density” is published in Matter. We show that solid-state batteries (SSBs) using high-temperature (molten) Li metal anodes can withstand extremely high current densities of 530 mA/cm2, which is an order-of-magnitude higher Continue Reading »

New paper in ACS Nano

Our paper “Area-Selective Atomic Layer Deposition Patterned by Electrohydrodynamic-Jet Printing for Additive Manufacturing of Functional Materials and Devices” is published in ACS Nano. We demonstrate that E-jet printing of polymers with sub-micrometer linewidths (down to 312nm) can be used to block ALD deposition with sub-nm precision in the z-direction, representing a new additive nanomanufacturing Continue Reading »